Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 349
1.
Eur J Pharm Biopharm ; : 114304, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38663522

Carbidopa and levodopa remain the established therapeutic standard for managing Parkinson's disease. Nevertheless, their oral administration is hindered by rapid enzymatic degradation and gastrointestinal issues, limiting their efficacy, and necessitating alternative delivery methods. This work presents a novel strategy employing dissolving microarray patches (MAPs) loaded with carbidopa and levodopa, formulated with Tween® 80 to improve their transdermal delivery. The fabricated MAPs demonstrated an acceptable mechanical strength, resisting pressures equivalent to manual human thumb application (32 N) onto the skin. Additionally, these MAPs exhibited an insertion depth of up to 650 µm into excised neonatal porcine skin. Ex vivo dermatokinetic studies could achieve delivery efficiencies of approximately 53.35 % for levodopa and 40.14 % for carbidopa over 24 h, demonstrating their significant potential in drug delivery. Biocompatibility assessments conducted on human dermal fibroblast cells corroborated acceptable cytocompatibility, confirming the suitability of these MAPs for dermal application. In conclusion, dissolving MAPs incorporating carbidopa and levodopa represent a promising alternative for improving the therapeutic management of Parkinson's disease.

2.
Mol Pharm ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602861

Parkinson's disease (PD) is a debilitating neurodegenerative disease primarily impacting neurons responsible for dopamine production within the brain. Pramipexole (PRA) is a dopamine agonist that is currently available in tablet form. However, individuals with PD commonly encounter difficulties with swallowing and gastrointestinal motility, making oral formulations less preferable. Microneedle (MN) patches represent innovative transdermal drug delivery devices capable of enhancing skin permeability through the creation of microconduits on the surface of the skin. MNs effectively reduce the barrier function of skin and facilitate the permeation of drugs. The work described here focuses on the development of polymeric MN systems designed to enhance the transdermal delivery of PRA. PRA was formulated into both dissolving MNs (DMNs) and directly compressed tablets (DCTs) to be used in conjunction with hydrogel-forming MNs (HFMNs). In vivo investigations using a Sprague-Dawley rat model examined, for the first time, if it was beneficial to prolong the application of DMNs and HFMNs beyond 24 h. Half of the patches in the MN cohorts were left in place for 24 h, whereas the other half remained in place for 5 days. Throughout the entire 5 day study, PRA plasma levels were monitored for all cohorts. This study confirmed the successful delivery of PRA from DMNs (Cmax = 511.00 ± 277.24 ng/mL, Tmax = 4 h) and HFMNs (Cmax = 328.30 ± 98.04 ng/mL, Tmax = 24 h). Notably, both types of MNs achieved sustained PRA plasma levels over a 5 day period. In contrast, following oral administration, PRA remained detectable in plasma for only 48 h, achieving a Cmax of 159.32 ± 113.43 ng/mL at 2 h. The HFMN that remained in place for 5 days demonstrated the most promising performance among all investigated formulations. Although in the early stages of development, the findings reported here offer a hopeful alternative to orally administered PRA. The sustained plasma profile observed here has the potential to reduce the frequency of PRA administration, potentially enhancing patient compliance and ultimately improving their quality of life. This work provides substantial evidence advocating the development of polymeric MN-mediated drug delivery systems to include sustained plasma levels of hydrophilic pharmaceuticals.

3.
J Mater Chem B ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38477350

Hydrogel-forming microneedles (HF-MNs) are composed of unique cross-linked polymers that are devoid of the active pharmaceutical ingredient (API) within the microneedle array. Instead, the API is housed in a reservoir affixed on the top of the baseplate of the HF-MNs. To date, various types of drug-reservoirs and multiple solubility-enhancing approaches have been employed to deliver hydrophobic molecules combined with HF-MNs. These strategies are not without drawbacks, as they require multiple manufacturing steps, from solubility enhancement to reservoir production. However, this current study challenges this trend and focuses on the delivery of the hydrophobic antibiotic rifampicin using SmartFilm-technology as a solubility-enhancing strategy. In contrast to previous techniques, smart drug-reservoirs (SmartReservoirs) for hydrophobic compounds can be manufactured using a one step process. In this study, HF-MNs and three different concentrations of rifampicin SmartFilms (SFs) were produced. Following this, both HF-MNs and SFs were fully characterised regarding their physicochemical and mechanical properties, morphology, Raman surface mapping, the interaction with the cellulose matrix and maintenance of the loaded drug in the amorphous form. In addition, their drug loading and transdermal permeation efficacy were studied. The resulting SFs showed that the API was intact inside the cellulose matrix within the SFs, with the majority of the drug in the amorphous state. SFs alone demonstrated no transdermal penetration and less than 20 ± 4 µg of rifampicin deposited in the skin layers. In contrast, the transdermal permeation profile using SFs combined with HF-MNs (i.e. SmartReservoirs) demonstrated a 4-fold increase in rifampicin deposition (80 ± 7 µg) in the skin layers and a permeation of approx. 500 ± 22 µg. Results therefore illustrate that SFs can be viewed as novel drug-reservoirs (i.e. SmartReservoirs) for HF-MNs, achieving highly efficient loading and diffusion properties through the hydrogel matrix.

4.
J Control Release ; 369: 363-375, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38554770

The lymphatic system is active in several processes that regulate human diseases, among which cancer progression stands out. Thus, various drug delivery systems have been investigated to promote lymphatic drug targeting for cancer therapy; mainly, nanosized particles in the 10-150 nm range quickly achieve lymphatic vessels after an interstitial administration. Herein, a strategy to boost the lymphotropic delivery of Rose Bengal (RB), a hydrosoluble chemotherapeutic, is proposed, and it is based on the loading into Transfersomes (RBTF) and their intradermal deposition in vivo by microneedles. RBTF of 96.27 ± 13.96 nm (PDI = 0.29 ± 0.02) were prepared by a green reverse-phase evaporation technique, and they showed an RB encapsulation efficiency of 98.54 ± 0.09%. In vitro, RBTF remained physically stable under physiological conditions and avoided the release of RB. In vivo, intravenous injection of RBTF prolonged RB half-life of 50 min in healthy rats compared to RB intravenous injection; the RB half-life in rat body was further increased after intradermal injection reaching 24 h, regardless of the formulation used. Regarding lymphatic targeting, RBTF administered intravenously provided an RB accumulation in the lymph nodes of 12.3 ± 0.14 ng/mL after 2 h, whereas no RB accumulation was observed after RB intravenous injection. Intradermally administered RBTF resulted in the highest RB amount detected in lymph nodes after 2 h from the injection (84.2 ± 25.10 ng/mL), which was even visible to the naked eye based on the pink colouration of the drug. In the case of intradermally administered RB, RB in lymph node was detected only at 24 h (13.3 ± 1.41 ng/mL). In conclusion, RBTF proved an efficient carrier for RB delivery, enhancing its pharmacokinetics and promoting lymph-targeted delivery. Thus, RBTF represents a promising nanomedicine product for potentially facing the medical need for novel strategies for cancer therapy.

5.
Int J Pharm ; 655: 124071, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38554738

In vitro permeation studies play a crucial role in early formulation optimisation before extensive animal model investigations. Biological membranes are typically used in these studies to mimic human skin conditions accurately. However, when focusing on protein and peptide transdermal delivery, utilising biological membranes can complicate analysis and quantification processes. This study aims to explore Parafilm®M and Strat-M® as alternatives to dermatomed porcine skin for evaluating protein delivery from dissolving microarray patch (MAP) platforms. Initially, various MAPs loaded with different model proteins (ovalbumin, bovine serum albumin and amniotic mesenchymal stem cell metabolite products) were prepared. These dissolving MAPs underwent evaluation for insertion properties and in vitro permeation profiles when combined with different membranes, dermatomed porcine skin, Parafilm®M, and Strat-M®. Insertion profiles indicated that both Parafilm®M and Strat-M® showed comparable insertion depths to dermatomed porcine skin (in range of 360-430 µm), suggesting promise as membrane substitutes for insertion studies. In in vitro permeation studies, synthetic membranes such as Parafilm®M and Strat-M® demonstrated the ability to bypass protein-derived skin interference, providing more reliable results compared to dermatomed neonatal porcine skin. Consequently, these findings present valuable tools for preliminary screening across various MAP formulations, especially in the transdermal delivery of proteins and peptides.


Paraffin , Skin Absorption , Animals , Swine , Infant, Newborn , Humans , Paraffin/metabolism , Membranes, Artificial , Skin/metabolism , Administration, Cutaneous , Pharmaceutical Preparations/metabolism
6.
Adv Healthc Mater ; : e2304082, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38471772

Dissolving microarray patches (DMAPs) represent an innovative approach to minimally invasive transdermal drug delivery, demonstrating efficacy in delivering both small and large therapeutic molecules. However, concerns raised in end-user surveys have hindered their commercialization efforts. One prevalent issue highlighted in these surveys is the lack of clear indicators for successful patch insertion and removal time. To address this challenge, a color-change-based feedback system is devised, which confirms the insertion and dissolution of DMAPs, aiming to mitigate the aforementioned problems. The approach combines hydrophilic needles containing model drugs (fluorescein sodium and fluorescein isothiocyanate (FITC)-dextran) with a hydrophobic poly(lactic acid) baseplate infused with moisture-sensitive silica gel particles. The successful insertion and subsequent complete dissolution of the needle shaft are indicated by the progressive color change of crystal violet encapsulated in the silica. Notably, distinct color alterations on the baseplate, observed 30 min and 1 h after insertion for FITC-dextran and fluorescein sodium DMAPs respectively, signal the full dissolution of the needles, confirming the complete cargo delivery and enabling timely patch removal. This innovative feedback system offers a practical solution for addressing end-user concerns and may significantly contribute to the successful commercialization of DMAPs by providing a visualized drug delivery method.

7.
Pharm Dev Technol ; 29(3): 164-175, 2024 Mar.
Article En | MEDLINE | ID: mdl-38363720

This study aimed to demonstrate the potential of using porous microneedles (PMNs) as a promising tool for the noninvasive quantification of topically applied pharmaceutical products. We fabricated a porous microneedle (PMN) from a blend of cellulose acetate and dimethyl sulfoxide by casting and phase separation; it was characterized using scanning electron microscopy, Raman spectroscopy, differential scanning calorimetry, and a Texture Analyzer. An ex vivo study was conducted as a proof-of-concept study to assess whether this PMN could be used to quantify drug absorption through the skin after the topical administration of two nonequivalent products of sodium ibuprofen (gel and dissolving microneedles). Three cellulose acetate formulations (PMN1: 37.5%, PMN-2: 44.4%, and PMN-3: 50%) were used to prepare PMN patches; subsequently, these were evaluated for their morphological and insertion properties. Only PMN-2 microneedle patches were chosen to continue with the ex vivo study. The ex vivo study results demonstrated that PMNs could absorb and release sodium ibuprofen (SDIB) and differentiate between two different SDIB topical products. This can be attributed to the porous and interconnected architecture of these microneedles. This developmental study highlights the potential success of such a tool for the quantification of dermal drug concentration and supports moving to in vivo tests.


Ibuprofen , Needles , Pharmaceutical Preparations , Porosity , Proof of Concept Study , Skin , Drug Delivery Systems/methods , Administration, Cutaneous , Sodium
8.
Article En | MEDLINE | ID: mdl-38416386

Circadian rhythms influence a range of biological processes within the body, with the central clock or suprachiasmatic nucleus (SCN) in the brain synchronising peripheral clocks around the body. These clocks are regulated by external cues, the most influential being the light/dark cycle, in order to synchronise with the external day. Chrono-tailored or circadian drug delivery systems (DDS) aim to optimise drug delivery by releasing drugs at specific times of day to align with circadian rhythms within the body. Although this approach is still relatively new, it has the potential to enhance drug efficacy, minimise side effects, and improve patient compliance. Chrono-tailored DDS have been explored and implemented in various conditions, including asthma, hypertension, and cancer. This review aims to introduce the biology of circadian rhythms and provide an overview of the current research on chrono-tailored DDS, with a particular focus on immunological applications and vaccination. Finally, we draw on some of the key challenges which need to be overcome for chrono-tailored DDS before they can be translated to more widespread use in clinical practice.

9.
J Control Release ; 366: 548-566, 2024 Feb.
Article En | MEDLINE | ID: mdl-38211640

The lymphatic system possesses the main viral replication sites in the body following viral infection. Unfortunately, current antiretroviral agents penetrate the lymph nodes insufficiently when administered orally and, therefore, cannot access the lymphatic system sufficiently to interrupt this viral replication. For this reason, novel drug delivery systems aimed at enhancing the lymphatic uptake of antiretroviral drugs are highly desirable. Dissolving polymeric microarray patches (MAPs) may help to target the lymph intradermally. MAPs are intradermal drug delivery systems used to deliver many types of compounds. The present work describes a novel work investigating the lymphatic uptake of two anti-HIV drugs: cabotegravir (CAB) and rilpivirine (RPV) when delivered intradermally using dissolving MAPs containing nanocrystals of both drugs. Maps were formulated using NCs obtained by solvent-free milling technique. The polymers used to prepare the NCs of both drugs were PVA 10 Kda and PVP 58 Kda. Both NCs were submitted to the lyophilization process and reconstituted with deionized water to form the first layer of drug casting. Backing layers were developed for short application times and effective skin deposition. In vivo biodistribution profiles of RPV and CAB after MAP skin application were investigated and compared with the commercial intramuscular injection using rats. After a single application of RPV MAPs, a higher concentration of RPV was delivered to the axillary lymph nodes (AL) (Cmax 2466 ng/g - Tmax 3 days) when compared with RPV IM injection (18 ng/g - Tmax 1 day), while CAB MAPs delivered slightly lower amounts of drug to the AL (5808 ng/g in 3 days) when compared with CAB IM injection (9225 ng/g in 10 days). However, CAB MAPs delivered 7726 ng/g (Tmax 7 days) to the external lumbar lymph nodes, which was statistically equivalent to IM delivery (Cmax 8282 ng/g - Tmax 7 days). This work provides strong evidence that MAPs were able to enhance the delivery of CAB and RPV to the lymphatic system compared to the IM delivery route.


Diketopiperazines , HIV Infections , Pyridones , Rilpivirine , Animals , Rats , Pharmaceutical Preparations , Tissue Distribution , Anti-Retroviral Agents , Polymers
10.
Pharmaceutics ; 16(1)2024 Jan 20.
Article En | MEDLINE | ID: mdl-38276512

Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of MAP delivery of micronized cabotegravir sodium (CAB Na) for HIV pre-exposure prophylaxis (PrEP). The refinement of microneedle design parameters, including needle length, shape, density, and arrangement, and the formulation properties, such as solubility, viscosity, polymer molecular weight, and stability, are crucial for improving penetration and release profiles. Additionally, a bilayer MAP optimization step was conducted by diluting the CAB Na polymeric mixture to localize the drug into the tips of the needles to enable rapid drug deposition into the skin following MAP application. Six MAP designs were analyzed and investigated with regard to delivery efficiency into the skin in ex vivo and in vivo studies. The improved MAP design and formulations were found to be robust and had more than 30% in vivo delivery efficiency, with plasma levels several-fold above the therapeutic concentration over a month. Repeated weekly dosing demonstrated the robustness of MAPs in delivering a consistent and sustained dose of CAB. In summary, CAB Na MAPs were able to deliver therapeutically relevant levels of drug.

11.
Anal Methods ; 16(7): 979-989, 2024 02 15.
Article En | MEDLINE | ID: mdl-38165785

Implantable devices have been widely investigated to improve the treatment of multiple diseases. Even with low drug loadings, these devices can achieve effective delivery and increase patient compliance by minimizing potential side effects, consequently enhancing the quality of life of the patients. Moreover, multi-drug products are emerging in the pharmaceutical field, capable of treating more than one ailment concurrently. Therefore, a simple analytical method is essential for detecting and quantifying different analytes used in formulation development and evaluation. Here, we present, for the first time, an isocratic method for tizanidine hydrochloride (TZ) and lidocaine (LD) loaded into a subcutaneous implant, utilizing reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a UV detector. These implants have the potential to treat muscular spasticity while providing pain relief for several days after implantation. Chromatographic separation of the two drugs was accomplished using a C18 column, with a mobile phase consisting of 0.1% TFA in water and MeOH in a 58 : 42 ratio, flowing at 0.7 ml min-1. The method exhibited specificity and robustness, providing accurate and precise results. It displayed linearity within the range of 0.79 to 100 µg ml-1, with an R2 value of 1 for the simultaneous analysis of TZ and LD. The developed method demonstrated selectivity, offering limits of detection and quantification of 0.16 and 0.49 µg ml-1 for TZ, and 0.30 and 0.93 µg ml-1 for LD, respectively. Furthermore, the solution containing both TZ and LD proved stable under various storage conditions. While this study applied the method to assess an implant device, it has broader applicability for analysing and quantifying the in vitro drug release of TZ and LD from diverse dosage forms in preclinical settings.


Clonidine/analogs & derivatives , Lidocaine , Quality of Life , Humans , Lidocaine/analysis , Lidocaine/chemistry , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations
12.
Drug Deliv Transl Res ; 14(3): 573-580, 2024 Mar.
Article En | MEDLINE | ID: mdl-37783973

Microneedle (MN) technologies offer the opportunity to improve patient access and target delivery of drugs and vaccines to specific tissues. When in the form of skin patches, MNs can be administered by personnel with minimal training, or could be self-administered by patients, which can improve access to medication, especially those usually requiring injection. Because MNs are small (usually sub-millimetre), they can be used for precise tissue targeting. MN patches have been extensively studied to administer vaccines and drugs in preclinical work as well as in multiple clinical trials. When formulated with biodegradable polymer, MNs can enable long-acting therapies by slowly releasing drug as the MNs biodegrade. Targeted drug delivery by hollow MNs has resulted in FDA-approved products that are able to inject vaccines to skin-resident immune cells to improve immune response and to target specific parts of the eye (e.g., suprachoroidal space) for increased efficacy and avoidance of side effects in other parts of the eye. Cosmetic products based on MN technologies are already in widespread use, mostly as anti-aging agents. With extensive research coupled with FDA-approved products, MN technology promises to continue is growth in research leading to products that can benefit patients.


Needles , Vaccines , Humans , Drug Delivery Systems/methods , Skin/metabolism , Administration, Cutaneous , Pharmaceutical Preparations , Technology
13.
Drug Deliv Transl Res ; 14(1): 208-222, 2024 Jan.
Article En | MEDLINE | ID: mdl-37477867

Research on the use of microarray patches (MAPs) has progressed at an unprecedented rate over the years, leading to the development of many novel drug delivery systems. As the technology approaches patients, there are several key aspects that ought to be addressed in order to facilitate the smooth translation of MAPs from bench to bedside. One integral factor includes the choice of devices and packaging for the storage of MAPs. In the current work, a slide-and-seal box, MAP-box, was developed for the storage of dissolving MAPs, using fused-deposition modelling. The device has been designed to act as a pill-box for MAPs not only to provide protection for MAPs from the environment, but also to improve patient's adherence to treatment. The overall design of the MAP-box was simple, yet offers the capability of sealing and protecting dissolving MAPs up to 30 days. Donepezil HCl was formulated into a dissolvable MAP, which was used to treat dementia related to Alzheimer's disease. This compound was used as a model formulation to evaluate the utility of the 3D printed MAP-box when placed under three storage conditions: 5 °C and ambient humidity, 25 °C and 65% relative humidity and 40 °C and 75% relative humidity. It was shown that the slide-and-seal box was able to confer protection to MAPs for up to 30 days under accelerated stability study conditions as the drug loading, mechanical properties and insertion properties of MAPs remained unaffected when compared to the unpackaged MAPs stored under these same parameters. These preliminary data provide evidence that the MAP-box prototype may be of great utility for the storage of single or multiple MAPs. Nevertheless, future work will be needed to evaluate their patient usability and its application to different types of MAP systems to fully validate the overall robustness of the prototype.


Drug Delivery Systems , Needles , Humans , Administration, Cutaneous , Transdermal Patch , Printing, Three-Dimensional
14.
Article En | MEDLINE | ID: mdl-38051475

The leading cause of death worldwide and a significant factor in decreased quality of life are the cardiovascular diseases. Endovascular operations like angioplasty, stent placement, or atherectomy are often used in vascular surgery to either dilate a narrowed blood artery or remove a blockage. As an alternative, a vascular transplant may be utilised to replace or bypass a dysfunctional or blocked blood vessel. Despite the advancements in endovascular surgery and its popularisation over the past few decades, vascular bypass grafting remains prevalent and is considered the best option for patients in need of long-term revascularisation treatments. Consequently, the demand for synthetic vascular grafts composed of biocompatible materials persists. To address this need, biodegradable clopidogrel (CLOP)-loaded vascular grafts have been fabricated using the digital light processing (DLP) 3D printing technique. A mixture of polylactic acid-polyurethane acrylate (PLA-PUA), low molecular weight polycaprolactone (L-PCL), and CLOP was used to achieve the required mechanical and biological properties for vascular grafts. The 3D printing technology provides precise detail in terms of shape and size, which lead to the fabrication of customised vascular grafts. The fabricated vascular grafts were fully characterised using different techniques, and finally, the drug release was evaluated. Results suggested that the performed 3D-printed small-diameter vascular grafts containing the highest CLOP cargo (20% w/w) were able to provide a sustained drug release for up to 27 days. Furthermore, all the CLOP-loaded 3D-printed materials resulted in a substantial reduction of the platelet deposition across their surface compared to the blank materials containing no drug. Haemolysis percentage for all the 3D-printed samples was lower than 5%. Moreover, 3D-printed materials were able to provide a supportive environment for cellular attachment, viability, and growth. A substantial increase in cell growth was detected between the blank and drug-loaded grafts.

15.
Pharmaceutics ; 15(12)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38140050

Microarray patches (MAPs) are currently under investigation as a self-administered, pain-free alternative used to achieve long-acting (LA) drug delivery. Cabotegravir is a potent antiretroviral that has demonstrated superior results over current pre-exposure prophylaxis (PrEP) regimens. This study aimed to apply physiologically based pharmacokinetic (PBPK) modelling to describe the pharmacokinetics of the dissolving bilayer MAP platform and predict the optimal dosing strategies for a once-weekly cabotegravir MAP. A mathematical description of a MAP was implemented into a PBPK model, and empirical models were utilised for parameter estimation. The intradermal PBPK model was verified against previously published in vivo rat data for intramuscular (IM) and MAP administration, and in vivo human data for the IM administration of LA cabotegravir. The verified model was utilised for the prediction of 300 mg, 150 mg and 75 mg once-weekly MAP administration in humans. Cabotegravir plasma concentrations >4 × protein-adjusted 90% inhibitory concentration (PA-IC90) (0.664 µg/mL) and >8 × PA-IC90 (1.33 µg/mL) were set as targets. The 75 mg, 150 mg and 300 mg once-weekly cabotegravir MAP regimens were predicted to sustain plasma concentrations >4 × PA-IC90, while the 300 mg and 150 mg regimens achieved plasma concentrations >8 × PA-IC90. These data demonstrate the potential for a once-weekly cabotegravir MAP using practical patch sizes for humans and inform the further development of cabotegravir MAPs for HIV PrEP.

16.
Pharmaceutics ; 15(12)2023 Dec 13.
Article En | MEDLINE | ID: mdl-38140107

Medical practitioners commonly use oral and parenteral dosage forms to administer drugs to patients. However, these forms have certain drawbacks, particularly concerning patients' comfort and compliance. Transdermal drug delivery presents a promising solution to address these issues. Nevertheless, the stratum corneum, as the outermost skin layer, can impede drug permeation, especially for macromolecules, genetic materials, stem cells, and secretome. Microneedles, a dosage form for transdermal delivery, offer an alternative approach, particularly for biopharmaceutical products. In this review, the authors will examine the latest research on microneedle formulations designed to deliver genetic materials, stem cells, and their derivatives. Numerous studies have explored different types of microneedles and evaluated their ability to deliver these products using preclinical models. Some of these investigations have compared microneedles with conventional dosage forms, demonstrating their significant potential for advancing the development of biotherapeutics in the future.

17.
Int J Pharm ; 648: 123585, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37952560

It is estimated that nearly a half of the world's population over 30 years old suffer from some kind of periodontal disease (PD). Although preventable, PD can pose a significant health burden to patients, causing from pain and discomfort to disfigurement and death. The management of PD often requires surgical procedures accompanied of systemic antibiotic and anti-inflammatory treatments. Curcumin (CUR), a potent anti-inflammatory and antimicrobial active, has shown great promise in the management of PD; however, its effects are often limited by its low bioavailability. In this work, we report the development of electrospun nanofibres (NFs) loaded with CUR nanocrystals (NCs) for the management of PD. NCs of 100 nm were obtained by media milling and loaded into dissolving polyvinyl alcohol NFs using electrospinning. The resultant NCs-in-NFs dissolved in water spontaneously, releasing NCs with a particle size of âˆ¼120 nm. The physiochemical characterisation of the systems indicated the absence of chemical interactions between drug and polymer, and nanofibres with an amorphous nature. In vitro release profiles demonstrated that the NCs had a significantly higher dissolution rate (∼100 % at day 40) than the control group (approximately 6 % at day 40), which consisted of NFs containing a physical mixture of the drug and stabiliser. Finally, mucosal deposition studies demonstrated a 10-fold higher capacity of the novel NCs-in-NFs system to deposit CUR ex vivo using excised neonatal porcine mucosal tissue, when compared to the control group.


Curcumin , Nanofibers , Nanoparticles , Infant, Newborn , Humans , Animals , Swine , Adult , Curcumin/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry , Anti-Inflammatory Agents , Particle Size , Drug Carriers/chemistry
18.
Pharm Dev Technol ; 28(10): 1016-1031, 2023 Dec.
Article En | MEDLINE | ID: mdl-37987717

Proteins and peptides are rapidly developing pharmaceutical products and are expected to continue growing in the future. However, due to their nature, their delivery is often limited to injection, with drawbacks such as pain and needle waste. To overcome these limitations, microneedles technology is developed to deliver protein and peptide drugs through the skin. One type of microneedles, known as dissolving microneedles, has been extensively studied for delivering various proteins and peptides, including ovalbumin, insulin, bovine serum albumin, polymyxin B, vancomycin, and bevacizumab. This article discusses polymer materials used for fabricating dissolving microneedles, which are poly(vinylpyrrolidone), hyaluronic acid, poly(vinyl alcohol), carboxymethylcellulose, GantrezTM, as well as other biopolymers like pullulan and ulvan. The paper is focused solely on solvent casting micromoulding method for fabricating dissolving microneedles containing proteins and peptides, which will be divided into one-step and two-step casting micromoulding. Additionally, future considerations in the market plan for dissolving microneedles are discussed in this article.


Drug Delivery Systems , Polymers , Pharmaceutical Preparations/metabolism , Polymers/metabolism , Solvents/metabolism , Drug Delivery Systems/methods , Administration, Cutaneous , Skin/metabolism , Proteins/metabolism , Peptides , Needles
19.
ACS Sens ; 8(11): 4161-4170, 2023 11 24.
Article En | MEDLINE | ID: mdl-37856156

Wearable devices based on microneedle (MN) technology have recently emerged as tools for in situ transdermal sensing or delivery in interstitial fluid (ISF). Particularly, MN-based electrochemical sensors allow the continuous monitoring of analytes in a minimally invasive manner through ISF. Exogenous small molecules found in ISF such as therapeutic drugs are ideal candidates for MN sensors due to their correlation with blood levels and their relevance for the optimal management of personalized therapies. Herein, a hollow MN array patch is modified with conductive pastes and functionalized with cross-linked chitosan to develop an MN-based voltammetric sensor for continuous monitoring of methotrexate (MTX). Interestingly, the chitosan coating avoids biofouling while enabling the adsorption of MTX at the electrode's surface for sensitive analysis. The MN sensor exhibits excellent analytical performance in vitro with protein-enriched artificial ISF and ex vivo under a Franz diffusion cell configuration. The MN sensor shows a linear range from 25 to 400 µM, which fits within the therapeutic range of high-dose MTX treatment for cancer patients and an excellent continuous operation for more than two days. Moreover, an iontophoretic hollow MN array patch is developed with the integration of both the anode and cathode in the single MN array patch. The ex vivo characterization demonstrates the transdermal on-demand drug delivery of MTX. Overall, the combination of both MN patches represents impactful progress in closed-loop systems for therapeutic drug management in disorders such as cancer, rheumatoid arthritis, or psoriasis.


Chitosan , Neoplasms , Wearable Electronic Devices , Humans , Methotrexate/therapeutic use , Needles
20.
Carbohydr Polym ; 320: 121194, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37659788

Carvedilol, a ß-blocker prescribed for chronic heart failure, suffers from poor bioavailability and rapid first pass metabolism when administered orally. Herein, we present the development of tip microarray patches (MAPs) composed of ternary cyclodextrin (CD) complexes of carvedilol for transdermal delivery. The ternary complex with hydroxypropyl γ-cyclodextrin (HPγCD) and poly(vinyl pyrrolidone) (PVP) reduced the crystallinity of carvedilol, as evidenced by DSC, XRD, NMR, and SEM analysis. MAPs were fabricated using a two-step process with the ternary complex as the needle layer. The resulting MAPs were capable of breaching ex vivo neonatal porcine skin to a depth ≈600 µm with minimal impact to needle height. Upon insertion, the needle dissolved within 2 h, leading to the transdermal delivery of carvedilol. The MAPs displayed minimal toxicity and acceptable biocompatibility in cell assays. In rats, MAPs achieved significantly higher AUC levels of carvedilol than oral administration, with a delayed Tmax and sustained plasma levels over several days. These findings suggest that the carvedilol-loaded dissolving MAPs have the potential to revolutionise the treatment of chronic heart failure.


Cyclodextrins , Heart Failure , Swine , Animals , Rats , Carvedilol , Administration, Oral , Biological Availability
...